Die Kunst gezielter Oxidation – Teil 3: Sauerstoff im Weißwein und oxidative Alterung
von Volker Schneider
Druckversion des Artikels hier
Bei der Aufnahme und Umsetzung von Sauerstoff in weißen Mosten ist eine enzymatisch induzierte Oxidation und nachfolgende Ausfällung phenolischer Substanzen zu beobachten. Die ausgeflockten Phenole werden im Rahmen der Mostvorklärung entfernt und stehen so zur Oxidation des späteren Weins nicht mehr zur Verfügung. Die Vorteile erschließen sich aus der Tatsache, dass solche Phenole pflanzlichen Ursprungs leicht oxidierbar sind und primäre Sauerstoffakzeptoren im Wein darstellen. Insbesondere die mit der Oxidation des Mostes verbundene Ausscheidung flavonoider Phenole führt zu einer besseren Widerstandsfähigkeit der Weißweine gegenüber dem Phänomen der oxidativen Alterung. Mittels des Verfahrens der Mostoxidation, sei es durch die passive Aufnahme von Sauerstoff oder durch dessen aktive Zufuhr, werden diese Vorgänge teilweise gezielt in der Weinbereitung eingesetzt. Der dabei eingebrachte Sauerstoff scheidet zusammen mit den ausgeflockten Phenolen aus dem System aus (siehe: Die Kunst gezielter Oxidation – Teil 1: Mostoxidation).
Der während der alkoholischen Gärung aufgenommene Sauerstoff wirkt ausschließlich auf die Hefe. Er führt zu einem stärkeren Hefewachstum und einer höheren enzymatischen Leistungsfähigkeit in den einzelnen Hefezellen. Die verbesserte enzymatische Konstitution der Hefe veranlasst sie zur Synthese von Überlebensfaktoren, welche für den reibungslosen Verlauf der Endphase der Gärung entscheidend sind. Die gezielte Versorgung gärender Moste mit Sauerstoff dient zur Sicherstellung der Endvergärung bei der Herstellung trockener Weine. Da der zugeführte Sauerstoff spontan und vollständig durch die Hefe aufgenommen wird, steht er zur Oxidation des Produktes nicht zur Verfügung (siehe: Die Kunst gezielter Oxidation – Teil2: Wirkung von Sauerstoff auf die Gärung).
Im Gegensatz zu diesen spezifischen Zwecken, für die der Sauerstoff gezielt und nutzbringend eingesetzt werden kann, ist seine Wirkung auf filtrierte oder abgefüllte Weißweine der fruchtigen Art eine gänzlich andere und der Qualität eher abträglich. Es ist allgemein bekannt, dass gängige Weißweine bei Kontakt mit Luftsauerstoff zur Oxidation neigen. Die direkte sensorische Folge dieser Oxidation ist der Verlust sortentypischer Fruchtaromen, manchmal gefolgt von einer Farbintensivierung. Man spricht von Alterung im weitesten Sinn.
Verschiedene Arten der Alterung
Die Alterung von Wein ist ein vielschichtiger Begriff. In der Tat können Weißweine im Verlauf der Lagerung verschiedene Alterstöne entwickeln, welche die ursprünglich beabsichtigte Qualität beeinträchtigen. Positiv gealterte Weißweine sind bestaunte Ausnahmen. Zum Verständnis ihrer Entstehung und zur Einleitung spezifischer Gegenmaßnahmen ist es erforderlich, die Alterstöne nach chemischen Ursachen und sensorischen Eigenschaften zu differenzieren. Man unterscheidet:
1. Petrolton, welcher mit Aromanoten nach Kerosin, Benzin und trockenen Aprikosen assoziiert wird und auf einen nichtoxidativen Abbau traubenbürtiger Carotinoide zurückzuführen ist. Als Problem weinbaulicher Ursachen ist er überwiegend auf Rieslinge aus reifem Lesegut beschränkt.
2. Lagerböckser, die aus einem Umbau schwefelhaltiger Substanzen zu geruchlich aktiven Verbindungen resultieren, welche an verbrannten Gummi, Knoblauch, altes Fleisch, faule Eier usw. erinnern. Primäre Ursache ist eine Stickstoffunterversorgung der Hefe während der Gärung.
3. Untypischen Alterungston (UTA), ausgelöst durch eine Umwandlung des pflanzlichen Stresshormons Indolessigsäure in geruchlich aktives ortho-Aminoacetophenon mit einem Aroma nach Mottenkugeln, Kleiderschrank, Waschmaschine, Waschpulver, nasser Wäsche und Zitronenblüte. Die Ursachen sind rein weinbaulicher Natur; die Ausprägung dieses Alterstons steht in keinem Zusammenhang mit der Aufnahme von Sauerstoff.
4. Altersfirne als typische und schon immer bekannte Form der Alterung, eingeleitet durch einen graduellen Zerfall der Fruchtaromen und deren sukzessive Überlagerung durch geruchliche Attribute von Heu, Stroh, Nüssen, Honig, Pilzen und feuchter Erde, oft begleitet von einer Farbintensivierung und zunehmenden Gerbigkeit im Mund (26, 27). Sie entspricht der Erwartungshaltung an gezielt oxidativ ausgebaute Spezialweine, ist aber unerwünscht in Weißweinen der fruchtigen Art.
Altersfirne durch Sauerstoff
Die sensorischen Effekte der Sauerstoffaufnahme auf den fertigen Weißwein lassen sich am besten anhand der Flaschenlagerung mit verschiedenen Verschlüssen demonstrieren. Wie an anderer Stelle (3, 29, 40) gezeigt wurde, führen Naturkorken zur Aufnahme beträchtlicher Mengen an Sauerstoff. Diese schwanken in einem weiten Bereich von 3 bis 30 mg/L O2 pro Jahr um einen Mittelwert von 10 mg/L O2, bezogen auf eine Flasche von 0,75 L. Unter gleichen Bedingungen erlaubt der Schraubverschluss nur eine Sauerstoffaufnahme von 3 ± 2 mg/L O2 pro Jahr (31).
Abbildung 1 zeigt bei zwei Weißweinen, wie sich die geringere Sauerstoffaufnahme durch den Schraubverschluss nach neunmonatiger Flaschenlagerung positiv auf den Erhalt der Fruchtaromatik auswirkt. Die mit Kork verschlossenen Varianten wiesen eine signifikant stärkere Altersfirne auf.
Dieser Effekt ist systematisch für alle Weißweine, wird aber in seinem Ausmaß durch zusätzliche Variablen differenziert. Dazu zählen die Lagertemperatur, die Weinmatrix und insbesondere der Gehalt an flavonoiden Phenolen. Abbildung 2 stellt bei den gleichen Weißweinen dar, wie sich der Zusatz von 30 mg/L flavonoiden Phenolen, sei es aus Traubenkernen extrahiert oder als reines Catechin, auf die Aromatik der mit Korken verschlossenen Flaschen auswirkt.
Erhöhte Gehalte an flavonoiden Phenolen werden durch eine mechanisch belastende Traubenverarbeitung als auch eine Maischestandzeit aus den festen Traubenbestandteilen extrahiert und durch eine reduktive Vinifikation im Most konserviert (30). Obwohl als solche geruchlos, verstärken sie durch ihre katalytische Wirkung die oxidationsbedingte Entwicklung der Altersfirne unter gleichzeitiger Minderung des Fruchtaromas. Diese Reaktionen werden durch eine warme Lagerung zusätzlich beschleunigt (12), wobei eine Erhöhung der Lagertemperatur um nur 5° C nach 10 Monaten signifikante sensorische Unterschiede ergab (29).
Chemismus der oxidativen Alterung
Während langer Zeit wurde die Minderung der Fruchtaromen während der Lagerung von Weißwein überwiegend auf eine Zunahme von Ethylestern, eine Abnahme von Acetaten und auf eine qualitative Veränderung des Spektrums sortenspezifischer Terpene zurückgeführt (17, 18). Während über diesen Abbau von Fruchtaromen relativ viel bekannt ist, sind die für die Altersfirne verantwortlichen Reaktionen und Endprodukte weniger erforscht. Zahlreiche Ergebnisse jüngerer Zeit weisen jedoch darauf hin, dass Zucker und Aminosäuren über langsam verlaufende Karamelisierungsreaktionen und solche vom Typ der Maillard-Reaktion involviert sind.
Reaktionen von Aminosäuren mit Aldehyden und Ketonen zu geruchlich aktiven Substanzen wurden unter den Bedingungen des Weins nachgewiesen. Insbesondere S-haltige Aminosäuren wie das Cystein führen zu diversen Pyrazinen, Thiazolen, Thiazolidinen und Oxazolen, die für komplexe Aromen nach Haselnüssen, gegrilltem Fleisch und reifen Früchten verantwortlich sind (16). Unabhängig davon wurden über einen völlig anderen Syntheseweg gebildete Lactone zumindest teilweise für das firne Geruchsbild verantwortlich gemacht (14).
Unter oxidativen Bedingungen werden durch gekoppelte Oxidation von ortho-Dihydroxyphenolen Acetaldehyd, und höhere Aldehyde gebildet (35), die wesentlich am Aroma von Sherry beteiligt sind. Die Bildung von Aldehyden ist ein Oxidationsproblem und führt zu einer sensorischen Beeinträchtigung (1). Simpson (35) konnte in Riesling nachweisen, dass infolge oxidativer Alterung eine Reihe von Substanzen gebildet wird, die bei Alterung unter Luftabschluss nicht entstehen. Zu solchen geruchlich aktiven Verbindungen zählten u. a. höhere Aldehyde einschließlich Benzaldehyd und Furfurale. Ferreira da Silva und Bertrand (10) fanden unter den Bedingungen oxidativer Lagerung im Holzfass ebenso eine Zunahme von Carbonylverbindungen wie gesättigte und ungesättigte Aldehyde sowie Methylketone. Sie schreiben den Geruch nach Altersfirne dem 2-Nonanon und dem 2-Undekanon zu.
Escudero et al. (5) fanden nach der Oxidation von sechs Weißweinen 22 neue, geruchlich aktive Substanzen. Vier davon lagen in allen Weinen und 13 in mehr als der Hälfte der Weine vor. Mehrere dieser Komponenten wiesen unangenehme bzw. oxidierte Geruchsnuancen auf. In der deskriptiven Analyse stellten sich 15 geruchliche Attribute als durch die Oxidation beeinflusst heraus. Das Aromagramm veränderte sich zu über 60 %. Es ist ein allen Weinen gemeinsames Oxidationsmuster ersichtlich. Für das Aromabild oxidierter Weine werden hauptsächlich höhere Aldehyde wie Methional verantwortlich gemacht (6). Die Aromanote nach gekochtem Gemüse korreliert mit den Gehalten an 2-Nonenal, Eugenol, Benzaldehyd und Furfural (7).
Silva Ferreira et al. (32, 33, 34) sowie Ferreira (9) stellten Methional und Phenylacetaldehyd als Schlüsselkomponenten für den Charakter oxidativ verdorbener Weißweine dar. Die Konzentrationen korrelierten mit der Sauerstoffaufnahme und den Aromanoten von gekochten Kartoffeln, Silagefutter, Heu und Holz. Lavigne-Cruech et al. (13) erkannten 2,5-Furandicarbaldehyd, Furylhydroxymethylketon und Hydroxymaltol als chemische Marker für die Entstehung von Altersfirne, insbesondere des Attributs Honig, während der Lagerung im Holzfass.
Die identifizierten Schlüsselsubstanzen belegen, dass die Aufnahme und Umsetzung von Sauerstoff eine große Rolle bei der Entstehung von Altersfirne spielt und dass Carbonylverbindungen wie höhere Aldehyde und deren Folgeprodukte zu den geruchlich verantwortlichen Substanzen zählen. Entsprechende oxidationsempfindliche Vorläuferstufen stehen in ausreichender Menge und Vielfalt zur Verfügung.
Bechränkte Wirkung der schwefligen Säure
Der Zusatz schwefliger Säure (SO2) ist in der Önologie das klassische Instrument zum Schutz des Weins vor der Oxidation. Bis zu einem gewissen Grad erfüllt die SO2 diese Aufgabe, wobei sie selbst zu Sulfat oxidiert und aus dem Redoxsystem ausscheidet. Daraus erklärt sich die Minderung von freier und gesamter SO2, wenn der Wein Sauerstoff aufnimmt.
Sofern der Sauerstoff vollständig mit der SO2 reagiert, führt 1,0 mg Sauerstoff zu einem Verlust von 4,0 mg SO2. Aus Lagerversuchen mit unterschiedlich verschlossenen Flaschen ergab sich jedoch, dass der SO2-Verlust geringer ausfällt als von der verschlussbedingten Sauerstoffaufnahme her zu erwarten war. Ein Teil des Sauerstoffs reagiert offensichtlich irreversibel mit anderen Weininhaltsstoffen (28).
Um diese Diskrepanz zu präzisieren, wurden 10 Weißweine mit 50-60 mg/L freier SO2 in hermetisch verschlossenen Reaktionsgefäßen versiegelt. Im Wein selbst und im Kopfraum dieser Gefäße stand eine Sauerstoffmenge von umgerechnet 10 mg/L zur Verfügung. Zur Bindung des Sauerstoffs wurden die Proben 50 Tage bei 20° C gelagert. Anschließend wurde der Verlust an gesamtschwefliger Säure ermittelt und in Relation zu den 10 mg/L umgesetzten Sauerstoffs gesetzt. Abbildung 3 zeigt, dass 1 mg O2 in Abhängigkeit vom einzelnen Wein unterschiedliche Mengen SO2 oxidiert. Statt dem theoretisch zu erwartenden Wert von 4 mg SO2 / 1 mg O2 ergab sich ein Mittelwert von 2,54 mg SO2 / 1 mg O2, entsprechend 63 %. Die verbliebenen 37 % des Sauerstoffs werden nicht durch SO2 abgefangen, sondern stehen zur Oxidation von anderen Weinbestandteilen zur Verfügung.
Es bestätigt sich, dass die freie SO2 nur einen beschränkten, obgleich variablen Schutz vor dem Sauerstoff darstellt. Die schützende Wirkung hängt von der Intensität der Oxidation und der Reaktionskinetik ab (36, 37).
Verbleib des Sauerstoffs im Weißwein
Welche aber sind die Substanzen, mit denen der restliche Sauerstoff reagiert? Schon lange sind die phenolischen Substanzen als primäre Sauerstoffakzeptoren bekannt. Ihre oxidierten Formen polymerisieren unter sich zu größeren Molekülaggregaten. Handelt es sich dabei um flavonoide Phenole, nehmen ihre Bitterkeit und Adstringens zu. Im Zuge der Polymerisation wird der phenolische Grundzustand wieder hergestellt und die Oxidation durch eine Art intramolekulare Umlagerung aufgehoben. Deshalb spricht man von regenerativer Polymerisation. Ein regeneriertes Phenol ist erneut oxidierbar, usw. Aufgrund der regenerativen Polymerisation vermögen Phenole ungleich mehr Sauerstoff zu binden, als von ihrer Konzentration her zu erwarten wäre (36). Ein Nebenprodukt der Phenoloxidation sind Peroxide. Diese aggressiven Oxidationsmittel vermögen Substanzen zu oxidieren, die der direkten Oxidation mit molekularem Sauerstoff nicht zugänglich sind, z. B. Ethanol zu Acetaldehyd (41).
Anhand von Modelllösungen, deren Zusammensetzung sich schrittweise der realer Weißweine nähert, konnte eine annähernde Bilanzierung der Reaktionswege und des Verbleibs des Sauerstoffs vorgenommen werden (28):
Der durch geklärte Weine aufgenommene Sauerstoff reagiert zunächst mit stets vorhandenen Schwermetallionen (2, 4, 15, 39) und Phenolen. Diese übertragen ihn auf andere Weininhaltsstoffe. Auf diesem Weg gelangen, je nach Reaktionsbedingungen, 60-90 % des Sauerstoffs zur schwefligen Säure. Sie oxidiert dabei zu Sulfat, wobei der Sauerstoff aus dem weiteren Oxidationsgeschehen ausscheidet. Weitere 10 % werden bei irreversibler Oxidation phenolischer Substanzen verbraucht, und ca. 5 % gehen in die Oxidation von Ethanol zu Ethanal ein. Der Verbleib des Restes ist ungeklärt und führt zu Oxidationen mit Konsequenzen für die Aromatik.
Diese Bilanzierung des Sauerstoffverbrauchs unterscheidet sich wesentlich von der in Rotwein (36, 37) und hefetrüben Jungweinen (8). In filtrierten Weißweinen ist die freie SO2 der wichtigste, wenngleich nicht alleinige Sauerstoffakzeptor. Die Kontrolle und Erhaltung eines adäquaten Gehaltes an freier SO2 ist in gängigen Weißweinen ein wichtiges Instrument zur Optimierung der Haltbarkeit, kann aber bei Weitem nicht alle Probleme mit vorzeitiger oxidativer Alterung lösen.
Durch die bevorzugte Reaktion mit Schwermetallen und Phenolen wird ein bislang unbekannter Anteil des Sauerstoffs in Form von Peroxiden in das Oxidationsgeschehen eingebracht. Dabei durchläuft er eine Reaktionskette bis zum Wasser, die sich schreiben lässt als
Sauerstoff → Superoxidradikal → Wasserstoffperoxid → Hydroxylradikal → Wasser.
Alle Zwischenstufen sind stärkere Oxidanten als der ursprüngliche Sauerstoff. Von ihnen konnten bisher Peroxide direkt im Wein nachgewiesen werden (4, 28, 38, 42). Durch freie SO2 werden ca. 90 % der intermediär gebildeten Peroxide abgefangen. Weitere 5 % erklären die Oxidation von Ethanol zu Acetaldehyd. Der verbleibende Anteil von Sauerstoff, Peroxid bzw. anderen Sauerstoffradikalen, der nicht zur Oxidation von SO2, Phenolen und Ethanol verbraucht wird, ist verantwortlich für die aromatischen Veränderungen während der Lagerung von Weißwein unter Sauerstoffzutritt.
Oxidationsschutz durch Feinhefe
Die Hefe nach der Gärung hat viele positive Eigenschaften (26). Eine davon ist ihre Wirkung als Reduktonsmittel. Aus der Praxis ist bekannt, dass ungeschwefelte Weißweine selbst unter Luftzutritt nicht bräunen, so lange sie hefetrüb sind. Werden sie jedoch im ungeschwefelten Zustand filtriert, tritt die Hochfarbigkeit mehr oder weniger spontan ein. Die Farbintensivierung ist dabei nur das visuell erkennbare Indiz einer tiefgreifenden Oxidation. Aus dieser klassischen Beobachtung geht hervor, dass die Hefe den Wein vor Oxidation schützt. Wohl bemerkt kann es sich dabei nur um Hefe in der Schwebe handeln. Als Depot abgesetzte Hefe ist in dieser Hinsicht weitgehend wirkungslos.
Die reduktive Wirkung der Hefe in der postfermentativen Phase ist zu erklären durch eine Sekretion von reduzierenden Aminosäuren an den Wein, mehr aber noch durch eine Zehrung von zutretendem Sauerstoff durch sie selbst. Der Sauerstoff wird dabei zur Peroxidation von Lipiden in der Zelle verbraucht (11, 20) und steht so zur Oxidation von Weininhaltsstoffen nicht mehr zur Verfügung
Abbildung 4 verdeutlicht, dass tendenziell umso mehr Sauerstoff gebunden werden kann, je höher der Gehalt an suspendierter Hefe ist. Eine lineare Beziehung zwischen Hefemenge und Sauerstoffzehrung besteht jedoch nicht. Eine so genannte Feinhefe entwickelt ihren Oxidationsschutz bereits bei einer geringen, optisch gerade noch als Opaleszenz wahrnehmbaren Trübung von 35 NTU, während deutlich höhere Hefegehalte kaum zusätzliche Vorteile ergeben.
Kellertechnische Maßnahmen wie Umpumpen, Auffüllen, Rühren, Filtrieren usw. führen dem Wein jeweils 0,5-5,0 mg/L O2 zu (siehe Tabelle 1). Aus einer einfachen Bilanzierung ergibt sich, dass die Feinhefe in der Lage ist, die gesamte Menge des während des Ausbaus aufgenommenen Sauerstoffs zu binden. Diese Fähigkeit hängt nicht allein vom Trübungsgrad des Weins, sondern auch vom Hefefstamm und dem biochemischen Status der Hefe ab. Abbildung 5 zeigt am Beispiel einer stark sauerstoffzehrenden Hefe, wie sich diese Fähigkeit einer gegebenen Hefemasse mit zunehmendem Alter bzw. Lager verringert.
In den ersten Wochen und Monaten nach der Gärung ist die Reduktionskraft der Hefe am stärksten. Sinnvollerweise werden eventuell notwendige Behandlungsmaßnahmen wie Schönungen oder Verschnitte in dieser Phase durchgeführt, damit der dabei zutretende Sauerstoff rasch durch die Hefe gezehrt wird. In den Folgemonaten ist das der Hefe verbleibende Reduktionsvermögen noch ausreichend, um über den Lagerbehälter zutretenden Sauerstoff abzufangen. Erst die Filtration setzt dem Oxidationsschutz durch Feinhefe ein Ende und eröffnet die Möglichkeit zur oxidativen Alterung. Eine grundlos frühe Filtration ist der Qualität kontraproduktiv.
Die nach Gärung und Abstich verbleibende Feinhefe kann ein wertvoller Organismus sein. Voraussetzung dazu ist, dass es sich bei dem Trubschleier des Jungweins tatsächlich um Hefe handelt und nicht um Rückstände aus der Traubenverarbeitung, die nach einer defizitären Mostvorklärung zurückgeblieben sind. Hefe ist nicht gleich Schmutz. Die gezielte önologische Nutung der Feinhefe setzt eine scharfe Mostvorklärung auf unter 100 NTU oder 0,5 % Gewichtsprozent Resttrub voraus. Unter diesen Bedingungen können strapaziöse maschinelle Klärprozesse im Weinstadium weitgehend durch eine schonende Selbstklärung ersetzt werden.
Hochwertige Weißweine erfordern eine konsequente Mostbehandlung und eine Minimalbehandlung nach der Gärung, um Aromaverluste und Sauerstoffaufnahme einzugrenzen. Dieses önologische Konzept wurde als "kontrolliertes Nichtstun" in der Önologie eingeführt (25).
Sauerstoffaufnahme bei Lagerung und Ausbau
Irgendwann, spätestens vor der Abfüllung, muss der Wein jedoch filtriert werden. Ab diesem Zeitpunkt ist er relativ ungeschützt den Folgen einer allfälligen Sauerstoffaufnahme ausgesetzt. Diese kann erfolgen durch den Werkstoff des Lagerbehälters, über die Oberfläche, bei Behandlungsmaßnahmen einschließlich des Abfüllens, aus dem Kopfraum der Flasche und durch den Flaschenverschluss.
Lagerbehälter: Die Entwicklung der Lagerbehälter hin zu Edelstahl kommt der Sauerstoffempfindlichkeit fruchtiger Weißweine entgegen. Stahl ist genau wie Glas absolut gasdicht. Die Sauerstoffdurchlässigkeit der in der Kellertechnik eingesetzten Behälterwerkstoffe nimmt zu in der Reihenfolge
Edelstahl < Polyester < Beton < Holz < Polyethylen..
Der Ausbau spezieller Weintypen in Materialien mit hoher Gasdurchlässigkeit wie zum Beispiel dem Barrique erfordert ein sorgfältiges Sauerstoffmanagement unter Nutzung der Reduktionskraft der Feinhefe (24).
Oberfläche und Kopfraum: Eine schwerlich kontrollierbare Sauerstoffaufnahme erfolgt über die Weinoberfläche aus dem Kopfraum nicht konsequent befüllter Lagerbehälter. Damit der Sauerstoff in den Wein diffundieren kann, ist eine Flüssigkeitsoberfläche erforderlich, die statischer oder turbulenter Natur sein kann. Statische Oberflächen liegen in teilbefüllten Gebinden vor. Werden solche gerührt, entsteht eine turbulente Oberfläche, die ebenso beim Fließen des Weins durch schlecht entlüftete Leitungen, Filter und Pumpen zu finden ist.
Die Geschwindigkeit, mit der atmosphärischer Sauerstoff in den Wein übergeht und die Menge, die sich darin löst, hängen von einigen physikalischen Grundgesetzen ab, von denen Temperatur und Druck eine herausragende Bedeutung zukommt. Messungen in Wein haben gezeigt, dass bei 12°C pro Stunde ca. 200 mg O2 / m2 in die ruhende Flüssigkeit diffundieren, bei bewegter Oberfläche ein Vielfaches mehr (19). Die sich daraus ergebenden Konsequenzen sind abhängig von dem Weinvolumen, in dem sich der Sauerstoff verteilt. Auf den Liter umgerechnet, werden kleine Gebinde durch das Vorliegen einer austauschaktiven Oberfläche oder technische Behandlungsmaßnahmen stärker mit Sauerstoff belastet als solche größeren Flüssigkeitsvolumens. Ausschlaggebend ist nicht das Volumen oder die Höhe des Kopfraums, sondern die Größe der Oberfläche und ihr Verhältnis zum Inhalt des Gebindes. Konsequentes Überschichten des Kopfraums mit Inertgas kann die Sauerstoffaufnahme minimieren, nicht jedoch die Migration flüchtiger Aromastoffe in den Kopfraum.
Behandlungsmaßnahmen: Bei jeder Bewegung des Weins im weitesten Sinne erfolgt eine Aufnahme von Sauerstoff. Diese prozessbedingte Sauerstoffaufnahme hängt erheblich von der momentan noch vorhandenen Kohlensäure ab. Beim Befüllen von oben ist die Sauerstoffaufnahme höher, wenn der Wein bereits weitgehend seine Gärungskohlensäure verloren hat. Sie ist geringer, wenn durch ein Entbinden von Kohlensäure ein Teil des im Kopfraum enthaltenen Sauerstoffs ausgewaschen wird.
Während des unterschichtigen Umlagerns CO2-haltiger Jungweine ist praktisch keine Aufnahme von Sauerstoff messbar, weil er durch eine gleichzeitige CO2-Entbindung ausgewaschen oder durch Feinhefe gezehrt wird. Tabelle 1 zeigt durchschnittliche Werte der Sauerstoffaufnahme, die bei verschiedenen Varianten von Ausbau und Lagerung eintritt. Die Angaben beziehen sich auf Weine bei durchschnittlicher Kellertemperatur, die ihre natürliche Gärungskohlensäure weitgehend verloren haben. Insofern kann es sich nur um Richtwerte handeln. Einige der angeführten Behandlungsmaßnahmen, die in der Praxis oft unbewusst durchgeführt werden, können dem Wein Sauerstoffmengen bis zu der Größenordnung von einer Sättigungskonzentration (9 mg/L O2) zuführen. Dazu zählen unter anderem das Befüllen der Gebinde von oben und der Transport in teilbefüllten Tanks.
Bei den mechanischen Klärtechniken ist die Sauerstoffaufnahme in dem angewandten Gerät, sofern gut entlüftet, meist geringer als in den ihm nachgelagerten Phasen. So erfolgt nach jeder Filtration eine zusätzliche Sauerstoffaufnahme beim Einfließen in den Filtrattank, die stark ist bei der Variante "Befüllen von oben" und weniger bedeutend bei der Variante "Befüllen von unten". Die Art des Befüllens der Gebinde differenziert die den einzelnen Klärtechniken zugeschriebene Sauerstoffaufnahme erheblich.
Unter spezifisch mitteleuropäischen Bedingungen werden gängige Weißweine im Tank ausgebaut und wenige Monate nach Abschluss der alkoholischen Gärung abgefüllt. Bis zur Bereitstellung zur Abfüllung erfolgt im Allgemeinen ein Abstich durch Befüllen von unten, eine Schönung in Verbindung mit Rühren, zwei Filtrationen und mindestens ein zusätzliches Umlagern im Rahmen von Verschnitten und Beifüllen. Summiert man die mit all diesen Vorgängen verbundene Sauerstoffaufnahme, kommt man leicht auf 10 mg/L O2, die ein Weißwein während eines relativ schonend durchgeführten Ausbaus im Tank vor seiner Abfüllung aufnehmen kann. Davon entfällt die Hälfte auf die Phase des hefetrüben Jungweins, während der aufgenommener Sauerstoff durch Hefe gezehrt und von Oxidationsreaktionen ferngehalten wird. Die verbleibenden 5 mg/L oxidieren Weininhaltsstoffe und werden sensorisch relevant.
Durch strapaziöse Weinbehandlung kann sich die Menge des aufgenommenen Sauerstoffs unkontrolliert vervielfachen. Die oxidative Alterung wird bereits vor der Abfüllung induziert. Aromaverluste durch Verdunstung verschärfen diesen Effekt. Der Wein ist bereits müde, gezehrt und aromatisch benachteiligt, bevor er in die Flasche gelangt. Die Minimalbehandlung als önologisches Konzept ist vor dem Hintergrund derartiger Qualitätseinbußen zu sehen (25).
Abfüllung: Die meisten Weine werden mittels Unterdruckfüller ohne Schutz durch Inertgas abgefüllt. Unter diesen Bedingungen erfährt der Wein eine Sauerstoffaufnahme im Füllkessel und beim Einlaufen in die Flasche. Vergleicht man den Sauerstoffgehalt vor dem Einlauf in den Füller und direkt nach dem Verschließen der Flaschen, stellt man eine Erhöhung im Bereich von 0,5-1,5 mg/L O2 fest, wobei eine gewisse Abhängigkeit vom Füllsystem zu beobachten ist. Eine durchschnittliche Sauerstoffaufnahme von 1 mg/L O2 während des eigentlichen Füllvorgangs ist vernachlässigbar gegenüber den Mengen, die der Wein vor und nach dem Abfüllen aufnimmt. Besonders im Rahmen strapaziöser Behandlungsmaßnahmen zur Herstellung der Füllbereitschaft gelangt oft überraschend viel Sauerstoff in den Wein, dessen Folgen fälschlicherweise dem Füllsystem zugeschrieben werden. Investitionen in das Füllsystem können somit Probleme mit vorzeitiger oxidativer Alterung kaum lösen.
Flaschenlagerung: Im Kopfraum der verschlossenen Flaschen ist Luft enthalten, sofern diese nicht durch eine Vakuumeinrichtung oder Überschichtung mit Kohlensäure kurz vor dem Verschließen entfernt wird. Bezogen auf eine Flasche von 0,75 Ltr. und einem durchschnittlichen Kopfraum von 4,0 mL bzw. 12 mm Höhe unter dem Kork, beträgt der in dieser Luft enthaltene Sauerstoff 1,5 mg/L. Wird die gleiche Flasche mit einem Schraubverschluss verschlossen, verbleibt ein größerer Kopfraum, in dem ca. 6 mg/L O2 enthalten sind. Bei der Abfüllung fruchtiger Weißweine hat es sich daher eingebürgert, die Luft im Kopfraum vor dem Verschließen zu eliminieren.
Die zusätzliche Sauerstoffaufnahme durch den Verschluss als solchen ist, wie eingangs gezeigt, bei den meisten Naturkorken höher, als fruchtigen Weißweinen zuträglich ist. Die Sauerstoffdurchlässigkeit von Kunststoffstopfen bewegt sich in ähnlicher Größenordnung. Moderne Schraubverschlüsse mit Zinnfolie als Einlage reduzieren die Sauerstoffaufnahme auf 1-2 mg O2 pro Jahr. Sehr gute Naturkorken sind in ihrer Gasdichtigkeit mit dem Schraubverschluss vergleichbar.
Im Gegensatz zu den synthetisch gefertigten Verschlüssen können bei Naturkorken jedoch erhebliche Schwankungen zwischen den Einzelstücken innerhalb einer Sortierung auftreten. Somit ist die Sauerstoffaufnahme durch den Naturkorken sowohl von der Korkcharge als auch vom Einzelstück abhängig. Daraus können unterschiedliche Entwicklungsstadien des gleichen Weins in Abhängigkeit von der einzelnen Flasche erklärt werden.
Je nach Flaschengröße wirkt der Sauerstoff auf unterschiedliche Weinvolumen. Ein in einer 0,375 Ltr.-Flasche abgefüllter Wein erfährt, auf den Liter umgerechnet, eine annähernd dreifach höhere Sauerstoffaufnahme als der in einer 1,0 Ltr.-Flasche. Daraus wird die Problematik beschleunigter oxidativer Alterung in kleinen Flaschengrößen deutlich. Andererseits entspricht der über den Kork zugeführte Sauerstoff - bezogen auf die 0,75 Ltr.-Flasche und 1 mg O2 pro Monat - annähernd der Menge, die im Rahmen der Mikrooxidation zur Reifung von Rotweinen eingesetzt wird.
Die Sauerstoffaufnahme durch den Flaschenverschluss ist ein entscheidendes Kriterium für die Haltbarkeit der Weißweine, dem zunehmend mehr Bedeutung beigemessen wird.
Zusammenfassung
Weißweine der fruchtigen Art reagieren mit deutlichen Qualitätsverlusten auf die Aufnahme von Sauerstoff, wie sie oft unkontrolliert bei der Lagerung und eventuellen Behandlungsmaßnahmen eintritt. Durch eine gezielte Vorbereitung des Mostes kann die Weinbehandlung minimiert werden. Schweflige Säure schützt Weißweine nur ungenügend vor Oxidation, während die vor der Filtration vorliegende Feinhefe allfällig aufgenommenen Sauerstoff bindet und der Reaktion mit dem Wein entzieht. Selbstklärung und späte Filtration können die oxidative Alterung bis zur Abfüllung hinauszögern. Ihr Ausmaß auf der Flasche wird im Wesentlichen durch die Sauerstoffaufnahme direkt vor der Abfüllung und den Flaschenverschluss vorgegeben.
Bitte schreiben Sie uns Ihren Kommentar